On Tensor Products of Polynomial Representations

نویسندگان

  • KEVIN PURBHOO
  • STEPHANIE VAN WILLIGENBURG
چکیده

We determine the necessary and sufficient combinatorial conditions for which the tensor product of two irreducible polynomial representations of GL(n, C) is isomorphic to another. As a consequence we discover families of LittlewoodRichardson coefficients that are non-zero, and a condition on Schur non-negativity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irreducibility of the tensor product of Albeverio's representations of the Braid groups $B_3$ and $B_4$

‎We consider Albeverio's linear representations of the braid groups $B_3$ and $B_4$‎. ‎We specialize the indeterminates used in defining these representations to non zero complex numbers‎. ‎We then consider the tensor products of the representations of $B_3$ and the tensor products of those of $B_4$‎. ‎We then determine necessary and sufficient conditions that guarantee the irreducibility of th...

متن کامل

J an 2 00 9 TENSOR PRODUCTS OF IRREDUCIBLE REPRESENTATIONS OF THE GROUP GL ( 3 , F q )

We describe the tensor products of two irreducible linear complex representations of the group G = GL(3, Fq) in terms of induced representations by linear characters of maximal torii and also in terms of classical and generalized Gelfand-Graev representations. Our results include MacDonald’s conjectures for G and at the same time they are extensions to G of finite counterparts to classical resu...

متن کامل

Weyl’s Construction and Tensor Power Decomposition for G2

Let V be the 7-dimensional irreducible representations of G2. We decompose the tensor power V ⊗n into irreducible representations of G2 and obtain all irreducible representations of G2 in the decomposition. This generalizes Weyl’s work on the construction of irreducible representations and decomposition of tensor products for classical groups to the exceptional group G2.

متن کامل

POSITIVITY AND THE CANONICAL BASIS OF TENSOR PRODUCTS OF FINITE-DIMENSIONAL IRREDUCIBLE REPRESENTATIONS OF QUANTUM sl(k)

In a categorification of tensor products of fundamental representations of quantum sl(k) via highest weight categories, the indecomposable tilting modules descend to the canonical basis. Projective functors map tilting modules to tilting modules implying the coefficients of the canonical basis of tensor products of finite dimensional, irreducible representations under the action of the Chevalle...

متن کامل

Irreducible Decomposition for Tensor Product Representations of Jordanian Quantum Algebras

Tensor products of irreducible representations of the Jordanian quantum algebras Uh(sl(2)) and Uh(su(1, 1)) are considered. For both the highest weight finite dimensional representations of Uh(sl(2)) and lowest weight infinite dimensional ones of Uh(su(1, 1)) , it is shown that tensor product representations are reducible and that the decomposition rules to irreducible representations are exact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008